Statistical Mechanics of Nonlinear Wave Equations. 3. Metric Transitivity for Hyperbolic Sine-Gordon

H. P. McKean¹

Received April 14, 1994; final December 2, 1994

McKean and Vaninsky proved that the canonical measure $e^{-H} d^{\infty}Q d^{\infty}P$ based upon the Hamiltonian $H = \int \left[\frac{1}{2}P^2 + \frac{1}{2}(Q')^2 + F(Q)\right] dx$ of the wave equation $\partial^2 Q/\partial t^2 - \partial^2 Q/\partial x^2 + f(Q) = 0$ with restoring force f(Q) = F'(Q) is preserved by the associated flow of Q and $P = Q^*$, and they conjectured that metric transitivity prevails, *always* on the whole line, and likewise on the circle *unless* f(Q) = Q or f(Q) = sh Q. Here, the metric transitivity is proved for the whole line in the second case. The proof employs the beautiful "d'Alembert formula" of Krichever.

KEY WORDS: Partial differential equations; statistical mechanics; ergodic theory.

McKean and Vaninsky⁽⁵⁾ discussed the petit ensemble for the nonlinear wave equation $\partial^2 Q/\partial t^2 - \partial^2 Q/\partial x^2 + f(Q) = 0$, f(Q) being an odd restoring force, i.e., it is of the same signature as Q. The data Q and $P = Q^{\bullet}$, taken at t = 0, are distributed according to the Gibbsian canonical measure

$$e^{-H} d^{\infty} P d^{\infty} O = e^{-(1/2) \int [P^2 + (Q')^2]} d^{\infty} P d^{\infty} O \times e^{-\int F(Q)}$$

in which F(Q) is the primitive of f(Q) and H is the Hamiltonian $\frac{1}{2} \int [P^2 + (Q')^2] + \int F(Q)$ of the flow

$$Q^{\bullet} = P = \partial H / \partial P,$$
 $P^{\bullet} = Q'' - f(Q) = -\partial H / \partial Q$

The meaning of the measure is easily explained. The factor $[\exp^{(-(1/2)\int P^2)}] d^{\infty}P$ states that P is white noise. As to $\{\exp^{[-(1/2)\int (Q')^2]}\} d^{\infty}Q$, think first of the circle $0 \le x < L$, i.e., let Q (and also P) be of period L. Then $\{\exp^{[-(1/2)\int (Q')^2]}\} d^{\infty}Q$ signifies that Q is

¹ Courant Institute of Mathematical Sciences, New York, New York.

"circular" Brownian motion, i.e., it is the standard Brownian motion starting at Q(0) = h, conditioned so as to be periodic [Q(L) = h], the common level *h* being distributed over the line by the measure *dh*. The infinite total mass of this measure is tempered by the factor $e^{-\int F(Q)}$: in fact, if $\int_0^{\infty} e^{-F(h)} dh < \infty$ as for $f(Q) = \operatorname{sh} Q$, then

$$Z = \int e^{-(1/2)\int (Q')^2} e^{-\int F(Q)} d^\infty Q < \infty$$

The distribution of Q may be made more transparent by a little trick: $F(\infty) = +\infty$, so $-(1/2) d^2/dQ^2 + F(Q)$ has positive ground state ψ , with $\int \psi^2(\theta) dQ = 1$ and eigenvalue A, in terms of which $F - A = (1/2)(m' + m^2)$ with $m = \psi'/\psi$. Now compute, by rules of the Brownian differential calculus, the (vanishing) integral of $d \lg \psi [Q(x)]$ over one period $0 \le x < L$: one has $d \lg \psi = m dQ + (1/2) m'(dQ)^2$ and $(dQ)^2 = dx$, whence

$$0 = \int m \, dQ + \frac{1}{2} \int m' \, dx = \int m \, dQ - \frac{1}{2} \int m^2 \, dx + \int F \, dx - \Lambda L$$

and

$$e^{-(1/2)\int (Q')^2}e^{-\int F(Q)} = e^{-(1/2)\int (Q')^2}e^{\int m(Q)\,dQ - (1/2)\int m^2(Q)\,dx}$$

up to the unimportant factor $\exp(AL)$, which may be ignored. Here, one recognizes the law of the (circular) diffusion with infinitesimal operator $\mathscr{G} = (1/2) \frac{\partial^2}{\partial Q^2} + m(Q) \frac{\partial}{\partial Q}$ in which the odd function m(Q) acts as a restoring drift, of signature opposite to that of Q, and it comes as no surprise that, as $L \uparrow \infty$, this law tends to that of the stationary diffusion with the same infinitesimal operator and stationary density $\psi^2(Q)$. It is in these ensembles that McKean and Vaninsky⁽⁵⁾ established the existence of the flow and the invariance of the measure under it. They conjectured that the flow is metrically transitive: *always* in the case of the line, and likewise for the circle *unless* $f(Q) = m^2 Q$ or $f(Q) = a \operatorname{sh}(bQ)$, i.e., except for Klein/ sinh-Gordon. The conjecture has a simple proof for sinh-Gordon on R. This is reported below, with further comments on Klein-Gordon. The rest is still open.

Step 1 notes that, for any wave equation, the data $Q_{\pm} = [Q(\pm x, x): x \in R]$ on the characteristics $t = \pm x$ determine the whole solution, as is well known for classical solutions and carries over to the unpleasant data $H^0 \times H^{-1}$ of the petit ensemble.

Step 2 is to observe that Q_+ and Q_- are copies of the horizontal diffusion $Q_0 = [Q(0, x): x \in \mathbb{R}]$ regulated by the infinitesimal operator \mathfrak{G} .

Fig. 1.

The same is true for any line t = a + bx making an angle of $\leq 45^{\circ}$ with the horizontal and has nothing to do with $f(Q) = \operatorname{sh} Q$, as will appear from the proof.

Proof. The petit ensemble is invariant under space/time translations, so $[Q_+(x): x \le x_0]$, $[Q_+(x): x \ge x_0]$, and $Q_+(x_0)$ stand in the same statistical relation as $[Q_+(x): x \le 0]$, $[Q_+(x): x \ge 0]$, and $Q_+(0)$. But of these last three, the first/second is measurable over the field of $[P_0(x), Q_0(x):$ $x \le 0]$, resp., $[P_0(x), Q_0(x): x \ge 0]$, so they are independent, conditional upon $Q_+(0)$ (see Fig. 1), with the result that Q_+ itself is a (stationary) diffusion. Now $dQ_0 = dB + m(Q_0) dx$ with a free Brownian motion B starting at B(0) = 0, so, for $x \downarrow 0$,²

$$Q_{+}(x) = Q_{+}(0) + \frac{1}{2}Q_{0}(2x) - \frac{1}{2}Q_{0}(0) + \frac{1}{2}\int_{0}^{2x} P_{0}(x') dx' + \frac{1}{2}\int_{A}^{2x} sh Q dt' dx'$$
$$= Q_{+}(0) + \frac{1}{2}B(2x) + \frac{1}{2}\int_{0}^{2x} P_{0}(x') dx' + \frac{1}{2}\int_{0}^{2x} m(Q_{0}) dx' + O(x^{2})$$
$$= Q_{+}(0) + B_{+}(x) + m[Q_{+}(0)]x + o(x)$$

in which the free Brownian motion $B_+(x) = (1/2) B(2x) + (1/2) \int_0^{2x} P_0$ is independent of the past $Q_+(x')$: $x' \le 0$; compare Fig. 1. The rest will be plain.

Step 3 recalls the analog for sinh-Gordon of d'Alembert's formula for the free wave equation; it is due to Krichever.⁽³⁾ We express ${}^{2}\Delta$ signifies the triangle with vertices 00, xx, 2x0.

McKean

 $\partial^2 Q/\partial t^2 - \partial^2 Q/\partial x^2 + \operatorname{sh} Q = 0$ in light-cone coordinates $\xi = \frac{1}{2}(x+t)$ and $\eta = \frac{1}{2}(x-t)$. It takes the form $\partial^2 Q/\partial \xi \, \partial \eta = 4 \operatorname{sh} Q$, which is equivalent to the compatibility³ of

$$\frac{\partial \psi}{\partial \xi} \psi^{-1} = \frac{1}{2} \frac{\partial Q}{\partial \xi} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ \lambda^{-1} & 0 \end{pmatrix} \quad \text{and} \quad \frac{\partial \psi}{\partial \eta} \psi^{-1} = \begin{pmatrix} 0 & \lambda e^{Q} \\ e^{-Q} & 0 \end{pmatrix}$$

for the function $\psi: (\xi, \eta, \lambda) \to SL(2, C)$ specified by the condition $\psi = 1$ at $\xi = \eta = 0$. Here ψ is an analytic function of λ in the twice-punctured sphere $\mathbb{P} - 0 - \infty$. Write $\psi = R_0^{-1}S_{\infty}$, R_0 being analytic in $\mathbb{P} - \infty$, with value $\begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix}$ at $\lambda = 0$, and S_{∞} analytic in $\mathbb{P} - 0$, with value $\begin{pmatrix} 0 & * \\ * & 1 \end{pmatrix}$ at $\lambda = \infty$. This factorization can be made in one and only one way; also, both pieces have determinant 1, necessarily. What is remarkable is that S_{∞} is independent of η : indeed,⁴

$$\frac{\partial S_{\infty}}{\partial \eta} S_{\infty}^{-1} = \frac{\partial R_0}{\partial \eta} R_0^{-1} + R_0 \begin{pmatrix} 0 & \lambda e^2 \\ e^{-2} & 0 \end{pmatrix} R_0^{-1}$$

is analytic on the whole sphere \mathbb{P} : as such, it is constant as regards $\lambda \in C$ and reduces to $\begin{pmatrix} 0 & 0 \\ * & 0 \end{pmatrix}$ at 0 and to $\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ at ∞ , so it must vanish identically. S_{∞} is now determined, from Q_{+} alone, by the rule

$$\frac{d}{dx}S_{\infty}(x,0)S_{\infty}^{-1}(x,0) = \frac{1}{2}Q'_{+}(x)\begin{pmatrix}1&0\\0&-1\end{pmatrix} + \begin{pmatrix}0&1\\\lambda^{-1}&0\end{pmatrix}$$

The game can be played the other way around: write $\psi = R_{\infty}^{-1}S_0$, S_0 being analytic in $\mathbb{P} - \infty$ and R_{∞} analytic in $\mathbb{P} - 0$, with the same normalizations at 0 and ∞ as before. Now⁵

$$\frac{\partial S_0}{\partial \xi} S_0^{-1} = \frac{\partial R_\infty}{\partial \xi} R_\infty^{-1} + R_\infty \left[\frac{1}{2} \frac{\partial Q}{\partial \xi} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ \lambda^{-1} & 0 \end{pmatrix} \right] R_\infty^{-1}$$

vanishes for like reasons, and S_0 is determined, from Q_{-} alone, by the rule

$$\frac{d}{dx}S_0(0,x)S_0^{-1}(0,x) = \begin{pmatrix} 0 & \lambda e \\ e^{-1} & 0 \end{pmatrix} \quad \text{with} \quad e = \exp[Q_-(x)]$$

Also,

$$-\frac{\partial R_{\infty}}{\partial \xi} = R_{\infty} \left[\frac{1}{2} Q' \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right] \quad \text{at} \quad \lambda = \infty \quad \text{with} \quad Q' = \frac{\partial Q}{\partial \xi}$$

³ This means $\partial^2 \psi / \partial \xi \ \partial \eta = \partial^2 \psi / \partial \eta \ \partial \xi$.

⁴ Use $\partial \psi / \partial \eta \psi^{-1} = \begin{pmatrix} 0 \\ e^{-\varrho} \\ e^{-\varrho} \end{pmatrix}$.

⁵ Use
$$\partial \psi / \partial \xi \psi^{-1} = \frac{1}{2} \partial Q / \partial \xi (\frac{1}{0 \text{ etc.}})$$

Nonlinear Wave Equations

so knowledge of R_{∞} at ∞ permits one to recover the full solution Q(t, x)from $Q_{-}(x)$ since $2 \lg r_{11} + Q$ does not depend upon ξ . This is not all! $S_{\infty}S_{0}^{-1} = R_{0}R_{\infty}^{-1}$ and the left side determines both factors on the right side separately,⁶ and so also Q from Q_{-} and Q_{+} . This is "d'Alembert's formula," reducing the solution of $\partial^{2}Q/\partial t^{2} - \partial^{2}Q/\partial x^{2} + \operatorname{sh} Q = 0$ to (a) determining S_{∞}/S_{0} from Q_{+}/Q_{-} , (b) refactoring $S_{\infty}S_{0}^{-1}$ as $R_{0}R_{\infty}^{-1}$, and (c) extracting Q from R_{∞} and Q_{-} .

Warning. The determination of S_{∞} from Q_{+} assumes that Q'_{+} exists, which is not true in the the petit ensemble. This is easy to fix: $dQ_{+} = dB + m(Q_{+}) dx$ with a standard Brownian motion B, and $S_{\infty} = S_{\infty}(x, 0)$ is the nonanticipating solution of

$$S_{\infty} = 1 + \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \int_{0}^{x} S_{\infty} dQ_{+} + \begin{pmatrix} 0 & 1 \\ \lambda^{-1} & 0 \end{pmatrix} \int_{0}^{x} S_{\infty} dx'$$

 S_{∞} dB being interpreted with dB centered, i.e., with

$$\int_{0}^{x} S_{\infty} dB = \lim_{n \uparrow \infty} \sum_{k/n \leq x} S_{\infty} \left(\frac{k}{n}\right) \left[B\left(\frac{k+1/2}{n}\right) - B\left(\frac{k-1/2}{n}\right) \right]$$
$$= \lim_{n \uparrow \infty} \sum_{k/n \leq x} S_{\infty} \left(\frac{k}{n}\right) \left[B\left(\frac{k+1}{n}\right) - B\left(\frac{k}{n}\right) \right] + \frac{1}{4} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \int_{0}^{x} S_{\infty} dx$$

Line 2 is the "nonanticipating" mode of writing with the differential in the future, so to say, and correction $\frac{1}{4}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \int_{0}^{x} S_{\infty}$ arising from the rule $(dB)^{2} = dx$; see McKean⁽⁴⁾ for such matters. S_{∞} is determined in this way, with probability 1 in the petit ensemble, and the "d'Alembert solution" so produced solves the wave equation in its customary integral form:

$$Q(t, x) = \frac{1}{2} \left[Q_0(x-t) + Q_0(x+t) \right] + \frac{1}{2} \int_{x-t}^{x+t} P_0(x') \, dx' + \frac{1}{2} \int_{a}^{b} \operatorname{sh} Q \, dt' \, dx'$$

that is the best one could expect.

Step 4. Now subject the random field $[Q(t, x): (t, x) \in R^2]$ to the vertical shift $Q(t, x) \rightarrow Q(t + T, x)$. Then $S_{\infty} \rightarrow S_{\infty}(\bullet + T/2) S_{\infty}^{-1}(T/2) \equiv S_{\infty}^{T/2}$, and $S_0 \rightarrow S_0(\bullet - T/2) S_0^{-1}(-T/2) \equiv S_0^{-T/2}$. But $S_{\infty}^{T/2}$, resp. $S_0^{-T/2}$, is determined by $Q_+(\bullet + T/2)$, resp. $Q_-(\bullet - T/2)$. The latter shifts are, individually, metrically transitive and even mixing—and more: $Q_+(x + T/2)$ and $Q_-(x - T/2)$ are independent, conditional on Q(0), as soon as $T/2 \ge |x|$, as

⁶ Use $R_0 = \begin{pmatrix} 1 & 0 \\ \bullet & 1 \end{pmatrix}$ at 0 and $R_\infty = \begin{pmatrix} \bullet & \bullet \\ 0 & \bullet \end{pmatrix}$ at ∞ .

⁷ The normalization $S_{\infty}(0) = 1$ must be respected.

McKean

can be seen from Fig. 1. Any residual dependence due to Q(0) washes out for $T \uparrow \infty$, so that the joint shift, and also the flow $S_{\infty} S_0^{-1} \rightarrow S_{\infty}^{T/2} S_0^{-T/2}$, is mixing, too, and Q inherits this property via d'Alembert's formula. The proof is finished.

Klein-Gordon (with mass m) illustrates some finer points which have not been verified otherwise, even for sinh-Gordon. Now $\Box Q + m^2 Q = 0$, P is white, as before, and Q is the (Gaussian) Ornstein-Uhlenbeck process with mass m, infinitesimal operator $(1/2) \partial^2/\partial Q^2 - mQ \partial/\partial Q$, and correlation $(2m)^{-1} \exp(-m|x|)$. The correlation of the field Q(t, x) is easily found from

$$Q(t, x) = \cos(t\Delta) Q_0(x) + \sin(t\Delta) \Delta^{-1} P_0(x)$$
 with $\Delta = (m^2 - D^2)^{1/2}$

 $\Delta^{-1}P_0$ is an independent copy of Q_0 , so⁸

$$E[Q(t, x) Q(0)] = [\Delta^{-2} \cos t \Delta](x, 0)$$

= $\frac{1}{2\pi} \int \frac{\cos t(k^2 + m^2)^{1/2}}{k^2 + m^2} e^{(-1)^{1/2}kx} dk$
= $\frac{e^{-m|x|}}{2m} - \frac{1}{2m} \int_{|x|}^{|t|} J_0(m[(t')^2 - x^2]^{1/2}) dt'$

with the understanding that the integral is present only if |x| < |t|; in particular, it is absent if $t = \pm cx$ and $|c| \le 1$, confirming the result of step 2. The process $Q_{\uparrow} = Q(\bullet, 0)$ is of special interest⁹:

$$E[Q_{\uparrow} \otimes Q_{\uparrow}] = \frac{1}{2m} - \frac{1}{2m} \int_{0}^{t} J_{0}(mt') dt' = \frac{1}{\pi} \int_{m}^{\infty} \frac{\cos tk}{(k^{2} - m^{2})^{1/2}} \frac{dk}{k}$$

from which follows the curious fact that the past $Q_{\uparrow}(t)$: $t \leq 0$ determines the future $Q_{\uparrow}(t)$: $t \geq 0$ since the spectral weight omits a band; also, mixing follows from the vanishing of $E[Q_{\uparrow} \otimes Q_{\uparrow}]$ for $t \uparrow \infty$.¹⁰ $P_{\uparrow} = Q'(\bullet, 0)$ is an independent copy of $(-D^2 - m^2) Q_{\uparrow}$ and shares its determinism/mixing in view of

$$E[P_{\uparrow} \otimes P_{\uparrow}] = \frac{1}{\pi} \int_{m}^{\infty} \cos tk (k^2 - m^2)^{1/2} \frac{dk}{k}$$

 $^{8}J_{0}$ is the standard Bessel function; see Bateman [ref. 1, 26(30)] for the necessary transform.

⁹ $Q \otimes Q$ means $Q(t_1) Q(t_2)$; also $t = |t_2 - t_1|$.

¹⁰ See, e.g., Dym and McKean⁽²⁾ for such matters.

Nonlinear Wave Equations

It is noteworthy that the "vertical" ensemble for P_{\uparrow} and Q_{\uparrow} so produced is invariant under the horizontal flow despite the fact that $f(Q) = m^2 Q$ now acts as a *repulsive* force: one does not expect a finite invariant measure then. The mystery is resolved by noting that the vertical ensemble is not of Gibbs type, i.e., unlike the "horizontal" ensemble, it has no mechanical interpretation.

ACKNOWLEDGMENTS

The work reported here was performed at the Courant Institute of Mathematical Sciences with the partial support of the National Science Foundation, under NSF grant DMS-9112654, which is gratefully acknowledged.

REFERENCES

- 1. H. Bateman, Tables of Integral Transforms (1) (McGraw-Hill, New York, 1954).
- 2. H. Dym and H. P. McKean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem (Academic Press, New York, 1976).
- 3. I. Krichever, Nonlinear equations and elliptic curves, *Itogi Nauki Tekhniki (J. Sov. Math.)* 28:51-90 (1985).
- 4. H. P. McKean, Stochastic Integrals (Academic Press, New York, 1965).
- H. P. McKean and K. L. Vaninsky, Statistical mechanics of nonlinear wave equations (1): The petit and microcanonical ensembles, in Trends and Perspectives in Applied Mathematics, L. Sirovich, ed. (Springer-Verlag, Berlin, 1994), pp. 239-264.